We exploit a natural experiment within each National Football League game, finding the first evidence in professional sports that referees succumb to the pressures of satisfying team personnel in the vicinity of possible violations. Using generalized additive models for binomial outcomes, we show that these sideline-based differences in penalty rates, which are observed on common but influential penalties including pass interference and holding, peak near the centralized location of players and coaches on the sideline. With sizable interests in referee decisions, coaches and players often try to manipulate referee behavior with verbal and nonverbal communications; such actions appear to be persuasive. (JEL ZO, H3)

I. INTRODUCTION

Sports has proven to be a fertile ground for testing models of corruption, discrimination, crime, incentives, supervision, and performance (Garicano, Palacios-Huerta, and Prendergast 2005). In particular, the study of sport referees (Dohmen and Sauermann 2015) has provided a glimpse into how certain competitive and social factors affect human behavior, theories that otherwise are difficult to empirically test.

As examples, referee decision making has been shown to be associated with player characteristics such as race, size, and stature (Gift and Rodenberg 2014; Mills 2014; Pope and Pope 2015; Price and Wolbars 2007), changes to the number of referees (Heckelman and Yates 2003), and their positioning during play (Kitchens 2014), as well as their own previous judgmental decisions (Abrevaya and McCulloch 2014; Gift 2015; Lopez and Snyder 2013). In addition, a referee pressure to support the home team has also been studied extensively (Boyko, Boyko, and Boyko 2007; Buraimo, Forrest, and Simmons 2010; Dohmen 2008; Garicano, Palacios-Huerta, and Prendergast 2005; Moskowitz and Wertheim 2011; Pettersson-Lidbom and Priks 2010; Sutter and Kocher 2004), as it has been identified that crowd noise is a cue that informs referee decision making (Buraimo, Forrest, and Simmons 2010; Nevill, Balmer, and Williams 2002). Other social pressures on referees, including whether or not the contest is on television (Lane et al. 2006), and the choice to make fewer calls at game’s end so as to avoid being part of a game’s narrative (Moskowitz and Wertheim 2011; Snyder and Lopez 2015), have also been suggested. And although their behavior is susceptible to outside factors, the monitoring of referees has been shown to reduce bias (Parsons et al. 2011; Pope, Price, and Wolbers 2013).

One aspect missing in the literature, but a part of the flow of any athletic event, is accounting for the pressure and monitoring applied on referees by team employees. Formally, coaches and players admit that “working the referees,” which includes acts of kindness and reverence as well as screaming during times of frustration, is part of a game plan (Abrams 2008). Although there is some evidence that suggests referees can be tricked into favoring either team (Petchesky and Kocher 2004), as it has been identified that crowd noise is a cue that informs referee decision making (Buraimo, Forrest, and Simmons 2010; Nevill, Balmer, and Williams 2002). Other social pressures on referees, including whether or not the contest is on television (Lane et al. 2006), and the choice to make fewer calls at game’s end so as to avoid being part of a game’s narrative (Moskowitz and Wertheim 2011; Snyder and Lopez 2015), have also been suggested. And although their behavior is susceptible to outside factors, the monitoring of referees has been shown to reduce bias (Parsons et al. 2011; Pope, Price, and Wolbers 2013).

One aspect missing in the literature, but a part of the flow of any athletic event, is accounting for the pressure and monitoring applied on referees by team employees. Formally, coaches and players admit that “working the referees,” which includes acts of kindness and reverence as well as screaming during times of frustration, is part of a game plan (Abrams 2008). Although there is some evidence that suggests referees can be tricked into favoring either team (Petchesky

ABBREVIATIONS

AA: Armchair Analysis
AIC: Akaike Information Criterion
CI: Confidence Interval
FO: Football Outsiders
GAM: Generalized Additive Model
IIA: Independence of Irrelevant Alternatives
LOS: Line of Scrimmage
NFL: National Football League

Economic Inquiry (ISSN 0095-2583) doi:10.1111/ecin.12341 © 2016 Western Economic Association International
2014), and that certain positions use their stature to gain leverage (Mills 2014), it is unknown to date if the immense and constant pressure placed on referees by players and coaches in all sports alters or impairs referee judgment.

If the pressure to satisfy personnel on the nearest sideline exists, it would link closely to established supervisor-subordinate theory. First, there’s a rent-seeking nature to the interaction between referees and team personnel, which manifests itself when coaches and players beg for favorable decisions without reciprocation. Second, knowing that they are constantly monitored, referees could act as risk adverse agents (Prendergast and Topel 1993b). The high stakes nature of professional sport creates potentially distorted incentives for referees, who, although tasked with the role of making impartial decisions, may instead adhere to more socially acceptable standards of rule enforcement. As one theory, providing favorable decisions to satisfy nearby coaches and players would be an understandable response to the fear of a coaches’ retribution to media after the game, which could jeopardize referee promotion and reputation (Boeri and Severgnini 2011). Finally, it is reasonable to view referees as supervisors who are also judges, in which case proximity effects come into play in a managerial context.

While previous work has linked both the size and relative location of the crowd to referee choices (Buraimo, Forrest, and Simmons 2010), fans have low levels of one-to-one interaction with referees. Meanwhile, the constant and often aggressive correspondence between coaches and referees happens on a personal level, in which case the close proximity could be responsible for an increase in favorable biases (Judge and Ferris 1993).

This article presents the first evidence of a successful sideline pressure in sports. Using data from the National Football League (NFL), we identify four sets of penalties in which referees are forced to make difficult decisions in the presence of one team’s sideline. With both standard and advanced modeling strategies, we find significant evidence that in the presence or surrounding of a particular team’s coaches and players, referees are more likely to call one of several penalties on that team’s opponent. Furthermore, rates of offensive holding, defensive pass interference, and aggressive defensive infractions, including personal fouls and unnecessary roughness, peak near midfield, but only on one team’s sideline. Given that this is the most likely spot for team personnel to influence referees one way or the other, we posit that referee decision making is strongly impacted by a pressure to appease the nearest stake-holders. Finally, using the observed differences in penalty rates, we explore the practical significance of our findings on play and game outcomes, while comparing our effect sizes to other known referee biases.

II. DATA

For the first and third quarters of an NFL game, coin tosses are used to assign teams end zones to defend. At the end of each of these 15 minutes of play, teams flip-flop sides for the second and fourth quarters. Such a set-up ensures that each team plays 30 minutes in each game moving toward and defending both end zones. Assuming that teams call plays independently of sideline location, the first and third quarter side changes make for a natural experiment that happens twice within every game. Because team benches remain on the same sideline for the duration of each contest, the flip-flopping of directions ensures that, on average, each team will run about the same number and type of play toward each team’s sideline by game’s end. As a result, we test if referees are influenced by pressure to appease the nearest coaches and players by contrasting penalty rates based on finishing sideline.

Armchair Analysis (AA, www.armchairanalysis.com), a website that matches the NFL’s official play-by-play data to game-, team-, and play-specific traits, provided play- and game-specific characteristics for each regular season play between the 2010 and 2014 seasons. This included the offensive and defensive units, line of scrimmage, down, distance, score, outcome, directions for both runs and passes, as well as each game’s stadium.1 Directions for runs and passes are coded as left, middle, or right.2 We exclude special teams plays, including kickoff and punt returns, because NFL game reports, and thus the AA data, do not label special teams plays with a direction. End zone directional information—that is, the direction that the offensive and defensive units are facing—is missing from both AA’s data and traditional NFL play-by-play reports. We used

1. AA claims a 99.8% accuracy rate with respect to game, team, and player statistics tracked by the league itself.
2. Pass plays are also categorized as either “deep” or “short.” We characterize any run play listed as “right end” or “left end” as an outside rush.
coin toss data courtesy of Football Outsiders (FO, www.footballoutsiders.com), a website that provides advanced statistical analysis of American football, which extracted this information from postgame “Game Books” that are put out by the NFL. These Game Books, and thus the FO data, are missing 97 halves of coin tosses, roughly 4% of the overall data set. Given that the missing games are scattered throughout the 5 years, we inferred that this information is missing completely at random (Little 1988) and performed analysis on the remaining data only.

Sideline information for each of the home and visiting teams was collected manually using team websites and seating guides.3,4 The stadium, coin toss, and play-by-play data were merged to calibrate our covariate of interest, Sidelinei, where for nr rush plays and np pass plays,

\[\text{Sideline}_i = \text{Direction of play } i, i = 1, \ldots, n_r, \]
\[n_r + 1, \ldots, n_r + n_p \]
\[= \{ \text{‘Offense’ if direction of play } i \]
\[\text{is the offensive teams sideline, } \]
\[\text{‘Defense’ if defense’s sideline} \}

We drop all middle rushes (those between the tackles) and middle passes from our data for two reasons. First, using plays over the middle as a control group for sideline plays requires extrapolation, given that plays over the middle may be unique for other reasons. For example, many defensive penalties in the middle of the field are late hits to the quarterback, which occur less frequently on sideline plays. Second, the statistical model described in Section II.A will use the logit link, one that makes the Independence of Irrelevant Alternatives assumption (IIA) (McFadden 1974). Under IIA, the relative odds of a penalty from one sideline versus the other act independently of plays over the middle of the field. As a result, contrasts between plays at each sideline will be identical whether or not penalties over the middle are excluded.

We consider the four outcomes \(Y_i \), where \(Y_i \in \{ \text{OHR}_i, \text{DPI}_i, \text{OPI}_i, \text{and DAP}_i \} \), most likely to vary based on pressure to appease team personnel, such that

- \(\text{OHR}_i = \{1 \text{ if there was an offensive holding penalty on play } i, 0 \text{ o/w} \}, i = 1, \ldots, n_r^5 \)
- \(\text{DAP}_i = \{1 \text{ if there was a defensive aggres-}

5. For offensive holding penalties, we look only at running plays given that on passing plays, most holding violations occur in the center of the field, away from either sideline.

6. Pass interference penalties cannot be called on rushing penalties.
there will be higher DAP and DPI rates on plays run toward the offensive team’s sideline, relative to the defensive team’s sideline. All together, if penalty rates vary by Sideline, it would link closely to the risk adverse nature of the referee position (Boeri and Severgnini 2011).

In addition to an overall difference in penalty rates, our second goal is to identify if a referee bias varies by the play’s line-of-scrimmage. Coaches, players, and other team staff are required to stand within a 36-yard zone in the center of each sideline, between endpoints of a trapezoid that extends between the field’s two marked 32-yard lines (NFL 2014). By rule, the sidelines at each stadium fit the same dimensions. Under a referee bias to appease a sideline, we expect the greatest difference in penalty rates between these two 32-yard line marks (e.g., the middle of the field), where the proximity between referees and team members peaks.

Generalized additive logistic models (GAM), (Hastie and Tibshirani 1986) are used to measure the effect of coach and player proximity on Y. GAMs require fewer assumptions and will allow us to more flexibly gauge the association between line-of-scrimmage and penalty likelihood, relative to a purely parametric approach such as multiple logistic regression. For example, one issue with multiple logistic regression is that it requires the associations between line-of-scrimmage and penalty likelihood to be specified as linear, quadratic, and/or piecewise, despite the true functional form being unknown. Let \(\text{LOS}_i \) be the line-of-scrimmage for play \(i \). Each of our penalty outcomes is modeled semiparametrically using the full model

\[
(1) \quad \logit(P(Y_i = 1)) = \beta_1 \ast I(\text{Sideline}_i = \text{Offense}) + f_{\text{Offense}}(\text{LOS}_i) + f_{\text{Defense}}(\text{LOS}_i),
\]

where \(I(\text{Sideline}_i = \text{Offense}) \) is an indicator for whether or not the play was run in the direction of the offensive team’s sideline, \(\logit(p) = \log\left(\frac{p}{1-p}\right) \), and \(f_{\text{Offense}}(\text{LOS}_i) \) and \(f_{\text{Defense}}(\text{LOS}_i) \) are the smoothed functions of the log-odds of a penalty based on plays run at the offensive and defensive teams’ sidelines, respectively, by \(\text{LOS} \).

Model (1) allows for plays to have different average baseline penalty rates on each sideline, as measured parametrically using \(\beta_1 \). But in addition to an overall difference, the nonparametric smoothing functions allow us to check for possible differences in the effect of \(\text{LOS} \) within each Sideline. Informally, the smoothing functions in Model (1) reflect the “wiggliness” of rates across \(\text{LOS} \)s, and in using \(f_{\text{Offense}}(\text{LOS}_i) \) and \(f_{\text{Defense}}(\text{LOS}_i) \), we allow for the shape of the association between \(\text{LOS} \) and the penalty outcomes to vary by Sideline.

For each \(Y \), Model (1) is compared to three reduced fits:

\[
(2) \quad \logit(P(Y_i = 1)) = \beta_1 \ast I(\text{Sideline}_i = \text{Offense}) + f_{\text{Overall}}(\text{LOS}_i),
\]

\[
(3) \quad \logit(P(Y_i = 1)) = f_{\text{Overall}}(\text{LOS}_i),
\]

\[
(4) \quad \logit(P(Y_i = 1)) = \beta_1 \ast I(\text{Sideline}_i = \text{Offense}).
\]

Models (2) and (3) include an overall surface term for line of scrimmage, \(f_{\text{Overall}}(\text{LOS}_i) \), implicitly making the assumption that any effect of the play’s line-of-scrimmage on penalty likelihood acts independently of play direction. If (2) or (3) provide stronger fits than (1), we would conclude that an \(\text{LOS} \) impact does not significantly differ by \(\text{Sideline} \). Model (4) assumes no effect of the game’s line-of-scrimmage on a penalty outcome, but like Model (2), still allows for differences in the baseline penalty rates by \(\text{Sideline} \). Models (1) and (2) are semiparametric as they contain both parametric and nonparametric components; Model (3) and Model (4) are fully nonparametric and parametric, respectively.

Because the NFL’s play-by-play data do not give precise information on where each pass was thrown to, other than to identify each throw as either “deep” (15 yards or more) or “short,” one last modification is made to more accurately consider where \(\text{DPI} \) and \(\text{OPI} \) infractions occur. Using the rough midpoints of the play-by-play distance labels, we estimated the location of the throw by adding 8 yards to the line-of-scrimmage for each short pass, and 25 yards for each deep pass. This will enable us to compare interference penalties by both \(\text{LOS} \) and the estimated yard line to which the ball was thrown.

Models are fit in the \textit{R} statistical software (R Core Team 2014), and are contrasted using the Akaike information criterion (AIC, Akaike (1974)), which includes a penalty for unneeded parameters to discourage overfitting. In each GAM, \(\text{LOS} \) surfaces are estimated using penalized thin-plate regression splines (Gu and Wahba
TABLE 1
Play Characteristics and Penalty Outcome Counts (with %’s) by Play Direction

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Level</th>
<th>Sideline</th>
<th>p Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play type</td>
<td>Rush</td>
<td>8,326 (19.6)</td>
<td>7,864 (19.3)</td>
</tr>
<tr>
<td></td>
<td>Pass</td>
<td>33,996 (80.4)</td>
<td>32,929 (80.7)</td>
</tr>
<tr>
<td>Score (offense)</td>
<td>Behind 2+ possessions</td>
<td>9,695 (22.9)</td>
<td>9,425 (23.1)</td>
</tr>
<tr>
<td></td>
<td>Behind 1 possession</td>
<td>11,253 (26.6)</td>
<td>10,624 (26.0)</td>
</tr>
<tr>
<td></td>
<td>Tied</td>
<td>7,748 (18.3)</td>
<td>7,502 (18.4)</td>
</tr>
<tr>
<td></td>
<td>Up 1 possession</td>
<td>8,163 (19.3)</td>
<td>7,984 (19.6)</td>
</tr>
<tr>
<td></td>
<td>Up 2+ possessions</td>
<td>5,463 (12.9)</td>
<td>5,258 (12.9)</td>
</tr>
<tr>
<td>Down/distance</td>
<td>First and 10</td>
<td>17,436 (41.2)</td>
<td>16,935 (41.5)</td>
</tr>
<tr>
<td></td>
<td>Second and long</td>
<td>10,747 (25.4)</td>
<td>10,411 (25.5)</td>
</tr>
<tr>
<td></td>
<td>Second and short</td>
<td>3,450 (8.2)</td>
<td>3,273 (8.0)</td>
</tr>
<tr>
<td></td>
<td>Third/fourth and long</td>
<td>6,229 (14.7)</td>
<td>5,911 (14.5)</td>
</tr>
<tr>
<td></td>
<td>Third/fourth and short</td>
<td>4,460 (10.5)</td>
<td>4,263 (10.5)</td>
</tr>
<tr>
<td>Penalty outcomes</td>
<td>OHR</td>
<td>278 (3.3)</td>
<td>298 (3.8)</td>
</tr>
<tr>
<td></td>
<td>DAP</td>
<td>298 (0.7)</td>
<td>205 (0.5)</td>
</tr>
<tr>
<td></td>
<td>DPI</td>
<td>494 (1.5)</td>
<td>408 (1.2)</td>
</tr>
<tr>
<td></td>
<td>OPI</td>
<td>179 (0.5)</td>
<td>183 (0.6)</td>
</tr>
<tr>
<td>Total plays</td>
<td></td>
<td>42,322</td>
<td>40,793</td>
</tr>
</tbody>
</table>

Note: OHR taken on run plays, DPI and OPI pass plays, DAP on all plays.
aCalculated using χ^2 tests of association.

As in Wood (2006) and implemented by Mills (2014), the model was fitted using penalized iteratively reweighted least squares, and a generalized cross-validation procedure was used to prevent overfitting with the smoothing degrees of freedom. Finally, given the difficulty in interpreting the smoothed function estimates from GAMs, we will also plot the resulting estimated penalty rates by LOS and Sideline to identify where possible differences exist.

III. RESULTS

As and FOs data yielded 152,751 offensive plays, including 69,636 which were discarded as middle runs or middle passes. Of the 83,115 outside plays, $n_p = 66,925$ were passes (80.5%), with the remaining plays rushing attempts. Just over half (42,322, 50.9%) were run in the direction of the offensive team’s sideline.

There do not appear to be any obvious differences between play calls (run/pass) or play situations (score, down, and distance) based on Sideline (Table 1). However, there are significantly higher rates of DAP (p value < .001) and DPI (p value = .018) among plays run at the offensive team’s sideline. This follows our hypothesized association that suggested more defensive penalties in the presence of offensive team personnel. There are not significant differences in the rates of OHR or OPI by Sideline.

There do not appear to be any teams that vary their play call distribution by Sideline. The highest fraction of team-specific sideline calls is Jacksonville (53.1% toward its own sideline), and the lowest is Oakland (48.8%), with other team rates symmetrically distributed in between those two cutoffs.

Model estimates are shown in Table 2. After adjusting for LOS using GAMs, there are baseline differences in both DAP and DPI across all model specifications, as judged by significant β_1 estimates. There is an estimated 39% increase (95% confidence interval [CI], 1.16–1.66) in the odds of a DAP when the play is run toward the offensive team’s sideline, compared to one run toward the defensive team’s sideline. The overall odds of a defensive pass interference are 22% higher (95% CI, 1.06–1.40) on plays run toward the offensive team’s sideline. There are no significant differences in the baseline rates of OHR or OPI violations. For each Y, estimates of β_1 are robust between the four model fits.

As implied by a noticeably lower AIC, Model (1) produces the best fit for OHR and DPI outcomes, implying that the effect of LOS on penalty likelihood significantly differs by Sideline for these penalties. There do not appear to be unique sideline effects based on LOS for DAP or OPI, whose lowest AIC’s are achieved via Models (2) and (3), respectively.

Figures 1–4 show estimated penalty rates, along with 95% CIs, based on each play’s LOS.
TABLE 2
Model Statistics and Estimated Coefficient

<table>
<thead>
<tr>
<th>Model</th>
<th>OHR</th>
<th>DAP</th>
<th>DPI</th>
<th>OPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model AIC</td>
<td>$\hat{\beta}1 (SE{\hat{\beta}_1})$</td>
<td>Model AIC</td>
<td>$\hat{\beta}1 (SE{\hat{\beta}_1})$</td>
</tr>
<tr>
<td>(1)</td>
<td>4,969</td>
<td>−0.117 (0.086)</td>
<td>6,145</td>
<td>0.331 (0.091)**</td>
</tr>
<tr>
<td>(2)</td>
<td>4,976</td>
<td>−0.130 (0.085)</td>
<td>6,142</td>
<td>0.334 (0.091)**</td>
</tr>
<tr>
<td>(3)</td>
<td>4,976</td>
<td>N/A</td>
<td>6,154</td>
<td>N/A</td>
</tr>
<tr>
<td>(4)</td>
<td>4,978</td>
<td>−0.130 (0.085)</td>
<td>6,142</td>
<td>0.335 (0.091)**</td>
</tr>
</tbody>
</table>

Notes: OHR taken on run plays, DPI and OPI pass plays, DAP on all plays. Model with lowest AIC in bold. N/A, not applicable.

() p value < .05 (.01).

FIGURE 1
Offensive Holding Penalties by Sideline, Line of Scrimmage, Estimated per 1,000 Running Plays with 95% Confidence Intervals

FIGURE 2
Defensive Aggressive Penalties by Sideline, Line of Scrimmage, Estimated per 1,000 Plays with 95% Confidence Intervals

and using model (1) for each penalty outcome. The x-axis in each figure represents the LOS, with the offensive team moving out of its own end zone from left to right. The 36-yard area containing team personnel lies between yard markers representing 32 and 68 yards from the offensive team’s end zone.

While OHRs are relatively consistent on plays run toward the offensive team’s sideline, there is a noticeable spike on plays run toward the defensive team’s sideline between roughly each of the 30-yard markers (Figure 1). At the 50-yard line, the fraction of OHRs is significantly higher—a difference of about 12 penalties per 1,000 plays—on plays run at the defensive team’s sideline. This suggests a successful pressure from defensive coaches and sideline players to draw violations on the offense, but only in locations where personnel are located during the run of play.

DAPs are higher on plays run at the offensive team’s sideline (Figure 2). In the middle of the field, infractions are about 50% more likely to occur in front of the offensive team’s sideline. The differences in DAPs by Sideline are smaller closer to each end zone.

Near an offensive team’s own end zone, DPIs are called significantly more often on plays run in the direction of the offensive team sideline (Figure 3). In contrast to OHRs and DAPs, however, differences in DPI rates by Sideline appear to subside around the 50-yard line. While this initially seems to violate our hypothesis of a greater sideline effect near midfield, keep in mind that most DPIs occur well

7. Exact smoothing parameter estimates are available upon request.
beyond the LOS, at the yard line to which the ball was thrown.

Figure 5 likewise shows the model-estimated penalty rates for DPI, but instead of surfaces for LOS, it uses an estimated yard line to which the pass was thrown. As in our other penalty outcomes, the largest differences in DPI rates occur on plays likely to have ended near the middle of the sideline. Of \(n_p \), 46,225 (69.1%) were plays that more than likely were thrown in vicinity of team personnel on either sideline. The ratio of defensive pass interference calls was nearly 3:2 (raw counts, 293 and 204) in this window, favoring plays toward the offensive team’s sideline. On passes thrown near one of the end zones, the ratio of flags by sideline was roughly 1:1 (counts of 201 and 204). Such a drastic difference adds context to Figure 3, which is limited in the fact that it uses only the LOS to contrast DPI frequencies.

Unlike our other outcomes, there are no noticeable differences in OPI rates by Sideline (Figure 4), a conclusion that holds when using either LOS or the estimated yard line to which the pass was thrown.

IV. DISCUSSION

It is generally assumed that football referees assess each possible violation on its own accord. However, we find multiple penalties whose likelihoods vary significantly based on whether or not the violation occurred in the presence of one team’s sideline. Further, model estimates suggest that the sideline locations including team personnel result in the largest differences in call rates. The highest ratios of the estimated differences range from 1.3 (offensive holding) to 2 (defensive pass interference) times as many violations, comparing one sideline to the other.

Models (1) through (4) do not adjust for any variables or functions of variables besides Sideline and LOS. However, our covariate of interest, Sideline, appears to act independently of other play- and game-specific covariates (Table 1). As
a result, problems such as omitted variable bias, in which variables that affect both the treatment (Sideline) and the outcome (Y) can produce confounded associations, should not impact our estimated Sideline effects. To check this assumption, we also adjusted each model for point differential, down and distance, game minute, a season-specific factor, and an indicator for whether or not the home team was the offensive team. Each estimated β_1 in these adjusted fits was within a one hundredth of the estimates shown in Table 2.

We attempted other model specification checks. First, we fit Model (1) using an interaction between the game’s minute (1–60) and Sideline to check the consistency of our sideline effects over the course of the game. None of the fits yielded significant interaction terms, implying that a sideline bias appears to be more instantaneous, as opposed to a pressure that grows or decays over the course of a contest. Additionally, we fit a model without β_1 but with smoothed LOS functions for each sideline. The AIC term from each of these fits ranked no better than the second best, among the models shown in Table 2, suggesting that our inclusion of a term to indicate the difference in average penalty rates by Sideline helps from a model fit perspective.

In principle, each of our penalty outcomes should result in enough punishment on the offending team as to deter players from committing the foul to begin with. One alternative explanation for a referee sideline bias, however, is that players adapt their behavior in the presence of coaches and players on the other team, perhaps acting more aggressively near opponents. This alternative justification is most reasonable for the DAP findings, with several such penalties likely occurring on the sideline itself and off the playing field (although this is impossible to check, as our play-by-play data does not consistently indicate if a play finished out-of-bounds). However, such an explanation would not justify the observed differences in OHRs, given that most players first engage in contact close to the line-of-scrimmage, away from referees and the sideline. Furthermore, DPIs on outside passing plays can happen anywhere within the outer third of the field, and in most of these locations, it is difficult to reason that the defending players act differently because of the sideline they are next to. As one final consideration, there is also the possibility that players were aware of a sideline bias and adapted their behavior accordingly, in which case our estimates could underestimate the true effects. Ultimately, although sideline choice appears independent of team- and play-specific factors, true penalty rates are unknown given the possible endogeneity.

While DPI frequencies appear to vary based on the location of the throw, we found no significant differences in OPI rates. However, there are several reasonable explanations for the null finding. First, while DPIs apply only from the time the ball is thrown until it is touched, OPIs can be thrown anytime beginning with the snap (Section V, NFL 2014). As a result, of the pass interference calls, only DPIs are guaranteed to be thrown near where the eventual pass lands according to the play-by-play data. Anecdotally, OPIs likely include several “pick” plays, in which one offensive player sets a pick for another offensive player to get open and receive the ball. In these and other scenarios, although the pass may be thrown toward a sideline, it is not as reasonable to assume a sideline pressure because the violation itself may have occurred on a different part of the field. As an additional justification for the null findings, OPIs may require less discretion on behalf of the officials, in which case such decisions would be less likely to vary based on a referee’s pressure to appease. Finally, there are fewer than half as many OPIs as DPIs. In addition to making it more difficult to discern a statistical difference with OPI, perhaps it is also less likely that coaches and players try to sway referee decisions with such a relatively rare infraction.

Although the differences in certain penalty rates meet criteria for statistical significance, a final important consideration is that of practical significance. Notably, each of our penalty outcomes carries a hefty punishment against the violating team. DPIs and DAPs each give the offensive unit a new set of downs with which to possess the ball, and DPIs are a spot foul, meaning that the line-of-scrimmage moves to wherever the penalty took place. As a result, while DAPs are usually a 15-yard infraction, many DPIs can be worth additional yardage. Additionally, offensive teams are penalized 10 yards for any holding penalty. Such punishments are relatively severe compared to other infraction types, and can have obvious impacts on the game.

Further identifying the effects of penalties on each game, however, can take some care. Anecdotally, Burke (2015) compared an offensive team’s win probability with and without a potential DPI call from a 2014 game between Detroit and Dallas, finding that an accepted penalty (on one team’s sideline, at roughly the 35 yard line) would have increased the offensive team’s
chances of winning from 67% to 79%. In this example, win probabilities were derived from a model that included the game’s score, time, down, distance, and field position (Burke 2014). We tried a similar approach using our data, fitting a multiple logistic regression model of game outcome (1 if the offensive team won the game, 0 otherwise) as a function of the five fixed effects suggested by Burke (2014). Additionally, we also included each of the pairwise interactions between these covariates to account for the varying effects of each covariate on game outcome (e.g., point differential is more important later in the game). In comparing the offensive team’s win probability before and after accepted DPIs, the median win probability added after the penalty was 3.6%, and 25% of all DPIs increased the offensive team’s win probability by 6.1% or more. Although team-level advantages to a sideline pressure may even out across the league’s 32 teams with a large number of games, because the NFL’s regular season is only 16 games, changes in win probability accounted for by a sideline bias are unlikely to be a zero-sum game within a season. Relatedly, Snyder and Lopez (2015) found a significant and nonrandom variation when looking at an offensive team’s ability to draw DPIs, implying that certain teams may be better at drawing interference penalties than others.

As the majority of offensive plays in an NFL game do not end in OHRs, DPIs, or DAPs, our penalty outcomes are relatively rare. However, the relative fraction of penalty outcomes that can be attributed to a sideline bias is noteworthy. For example, our data set contains 596 DPIs estimated to have occurred near midfield (204 at defensive sideline, 99 down the middle, 293 at offensive sideline). Using the defensive sideline DPI rate as a baseline, roughly 15% of all DPIs in this area can be explained by a sideline pressure. This adds context to Figures 1–5, which show absolute differences in rates varying by up to 12 penalties per 1,000 plays (OHR), or relative differences as high as 50% (DPI) to 100% (DAP), given the LOS.

Perhaps most importantly, the aggregated effects of a sideline bias dominate any differences in penalties between home and away teams. For example, our data set of sideline passes contained 60 additional DPI calls when the home team was on offense. This difference represents about two-thirds of the difference in flags that we observed based on Sideline. Moreover, using the same data presented above, home teams on offense were called for more OHRs (we would expect fewer under a home bias) and drew fewer DAPs (we would expect more), relative to the away team being on offense. On average, as far OHR and DAP are concerned, there is no obvious advantage to being a home team, particularly when compared to a Sideline effect. Additionally, using an interaction term in Model (1), we checked if our sideline effects differed based on whether or not the home team was on offense. There was no evidence that a sideline effect differed based on the offensive team’s status, as judged by the significance of the interaction term.

Finally, although there were 842 DAPs in our data set, this only represents about 45% of these penalty outcomes; an additional 1,029 occurred on special teams. As mentioned in Section II, directional information for special teams plays is not included in the NFL’s play-by-play reports. Given that several of these missing penalties came on kick and punt returns, the importance of a sideline pressure on DAP calls is potentially higher than what we were able to find. Other than the 4% of halves missing coin toss data, all sideline OPIs, DPIs, and OHRs are accounted for.

V. CONCLUSION

A home bias due to referee calls has been extensively studied, and one purveying theory is that under duress, the crowd noise prompts referees to make decisions that support the home team (Nevill, Balmer, and Williams 2002; Sutter and Kocher 2004; Unkelbach and Memmert 2010). This confirms work in behavioral economics and psychology, where it has been shown that the most salient cues have the largest effects when people are forced to make decisions under a time pressure (Wallsten and Barton 1982).

Until now, however, it has been assumed that the primary impetus for uncertain referees has been a crowd noise in favor of the home team (Buraimo, Forrest, and Simmons 2010; Nevill, Balmer, and Williams 2002). We propose that in several settings, a sideline pressure dwarfs that of the home crowd. However, this is not to say a home bias does not exist in football; instead, we argue that if noise is a cue, a sideline noise is more salient than that of the home crowd. This follows results of Buraimo, Forrest, and Simmons (2010), who noted that effect of noise on referee behavior was proportional to how close noise was to the referees.

There are several extensions to our work. The role of referees (supervisors, judges) in sports is
defined by their neutrality toward the productivity and actions of the players and coaches (workers) within their subjective judgements. Therefore, bias arising from proximity has specific lessons for managers in the workplace. Given that the most extreme sideline biases occur near the middle of the field, when coaches and players are closest to the referees, our results match those of Judge and Ferris (1993), who showed that proximity alone increases favorable rulings. But there may also be a risk adverse nature to referee behavior. Although they are assigned to behave impartially, the constant fear of upsetting nearby coaches and players, mixed with the possibility of being blamed after the game by this same group, may be driving referees to make biased decisions in favor of the nearest sideline.

Given the multimillion dollar athletes and coaches that are pressuring them, one final theory would be to consider the referees to be subordinates, and not as judges or supervisors. In this role, the less well-known referees are goaded by athletes and coaches into making favorable decisions, and the sideline banter is as much of a workplace bullying (Rayner and Hoel 1997) as it is a lobbying. Such a pressure from the sideline also has a rent-seeking nature to it, with coaches and players seeking favorable decisions without reciprocation.

One response to social pressure is to make performance less sensitive to evaluations (Prendergast and Topel 1993a). However, this is difficult in sport given the public nature in which all participants, in particular the referees, operate. Given that referees have shown a willingness to adapt their behavior when made aware of their biases (Pope, Price, and Wolfer 2013), one solution may simply be to make the league aware of this behavior. Ultimately, however, unless team personnel are removed from direct contact with the run of play, it may be impossible to remove a sideline bias from the NFL.

Several sports, for example, basketball, hockey, and soccer, also feature similar planned directional changes to the one in football. However, granular data with respect to the location of referees and participants in these sports may be difficult to obtain. If such information is available, future work is warranted to unify and extend the effects presented here.

REFERENCES

