Lecture 11: Statistics in soccer

Skidmore College, MA 276

Goals

- ▶ Metrics in soccer
- ► Expected goals
- ► Tools: Poisson distribution, Bradley Terry (review)

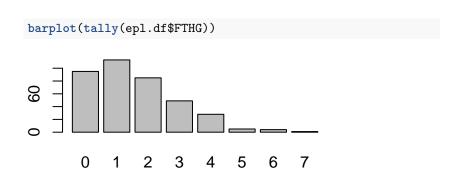
Review:

```
epl.df <- read.csv('http://www.football-data.co.uk/mmz4281/1314/E0.csv')
epl.df <- epl.df %>%
    select(Date, HomeTeam, AwayTeam, FTHG, FTAG) %>%
    mutate(Outcome = ifelse(FTHG > FTAG, 1, ifelse(FTHG < FTAG, 0, 0.5)))
head(epl.df)</pre>
```

##		Date	HomeTeam	AwayTeam	FTHG	FTAG	${\tt Outcome}$
##	1	17/08/13	Arsenal	Aston Villa	1	3	0.0
##	2	17/08/13	Liverpool	Stoke	1	0	1.0
##	3	17/08/13	Norwich	Everton	2	2	0.5
##	4	17/08/13	${\tt Sunderland}$	Fulham	0	1	0.0
##	5	17/08/13	Swansea	Man United	1	4	0.0
##	6	17/08/13	West Brom	${\tt Southampton}$	0	1	0.0

Review:

```
## ability s.e.
## Arsenal 0.0000000 0.0000000
## Aston Villa -1.6500862 0.5230498
## Cardiff -1.9657610 0.5349346
## Chelsea 0.1446607 0.5382662
## Crystal Palace -1.4101387 0.5170699
## Everton -0.2706003 0.5213307
```

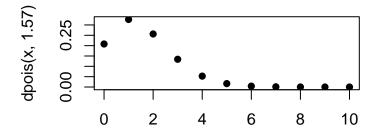

Review

tail(homeBT\$coeff)

```
## teamSunderland teamSwansea teamTottenham teamWest Brom teamWest Ham
## -1.6500862 -1.4694329 -0.4615757 -1.5893264 -1.5893264
## home.adv
## 0.3746677
```

- 1. Estimate the probability that Aston Villa beats Chelsea on a neutral field
- 2. Estimate the probability that Aston Villa beats Chelsea when playing at home
- 3. Let your answer to (1) be \hat{p}_1 and your answer to (2) be \hat{p}_2 . Calculate $\frac{\hat{p}_2/(1-\hat{p}_2)}{\hat{p}_1/(1-\hat{p}_1)}$.

Sidebar: What is this shape?



Sidebar: Poisson distribution

```
P(x \text{ events in interval}) = \frac{\lambda^x e^{-\lambda}}{x!} \text{ for } x = 0, 1, ...
```

```
mean(epl.df$FTHG); var(epl.df$FTHG)
```

```
## [1] 1.573684
## [1] 1.896931
## Lambda ~ 1.57
x <- seq(0, 10, 1)
plot(x, dpois(x, 1.57), pch = 16)</pre>
```


Soccer analytics

Summarize: Introduction to Analytics in . . . Soccer (link)

Those who don't understand the past are ...

Summarize: What analytics can teach us about the beautiful game (link)

Expected goals

Summarize: Expected goals 2.0 (link)

Expected goals & predictability

Summarize: Best predictor of future performance is expected goals (link)

Expected goals, repeatability of finishing skill

Summarize: Repeatability of finishing skill (link)

Randomness and expected goals

Summarize: 12 shots good, 2 shots better (link)